Back to Search Start Over

Pseudo-Differential Operators on ℤ.

Authors :
Molahajloo, Shahla
Source :
Pseudo-differential Operators: Complex Analysis & Partial Differential Equations; 2010, p213-221, 9p
Publication Year :
2010

Abstract

A necessary and sufficient condition is imposed on the symbols σ: ℤ×S <superscript>1</superscript>→ℂ to guarantee that the corresponding pseudo-differential operators T<subscript>σ</subscript>: L<superscript>2</superscript>(ℤ)→L<superscript>2</superscript>(ℤ) are Hilbert-Schmidt. A special sufficient condition on the symbols σ: ℤ×S <superscript>1</superscript>→ℂ for the corresponding pseudo-differential operators T<subscript>σ</subscript>: L<superscript>2</superscript>(ℤ)→L<superscript>2</superscript>(ℤ) to be bounded is given. Sufficient conditions are given on the symbols σ: ℤ×S <superscript>1</superscript>→ℂ to ensure the boundedness and compactness of the corresponding pseudo-differential operators T<subscript>σ</subscript>: L<superscript>p</superscript>(ℤ)→L<superscript>p</superscript>(ℤ) for 1⊆p<∞. Norm estimates for the pseudo-differential operators T<subscript>σ</subscript> are given in terms of the symbols σ. The almost diagonalization of the pseudo-differential operators is then shown to follow from the sufficient condition for the L<superscript>p</superscript>-boundedness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783034601979
Database :
Complementary Index
Journal :
Pseudo-differential Operators: Complex Analysis & Partial Differential Equations
Publication Type :
Book
Accession number :
77632447
Full Text :
https://doi.org/10.1007/978-3-0346-0198-6_12