Back to Search Start Over

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L 1 Plane.

Authors :
Grüne, Ansgar
Lin, Tien-Ching
Yu, Teng-Kai
Klein, Rolf
Langetepe, Elmar
Lee, D. T.
Poon, Sheung-Hung
Source :
Algorithms & Computation (9783642175138); 2010, p121-131, 11p
Publication Year :
2010

Abstract

The spanning ratio and maximum detour of a graph G embedded in a metric space measure how well G approximates the minimum complete graph containing G and metric space, respectively. In this paper we show that computing the spanning ratio of a rectilinear path P in L<subscript>1</subscript> space has a lower bound of Ώ(n logn) in the algebraic computation tree model and describe a deterministic O(n log<superscript>2</superscript>n) time algorithm. On the other hand, we give a deterministic O(n log<superscript>2</superscript>n) time algorithm for computing the maximum detour of a rectilinear path P in L<subscript>1</subscript> space and obtain an O(n) time algorithm when P is a monotone rectilinear path. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783642175138
Database :
Complementary Index
Journal :
Algorithms & Computation (9783642175138)
Publication Type :
Book
Accession number :
76779040
Full Text :
https://doi.org/10.1007/978-3-642-17514-5_11