Back to Search Start Over

A Proteomic Analysis of MCLR-induced Neurotoxicity: Implications for Alzheimer's Disease.

Authors :
Li, Guangyu
Cai, Fei
Yan, Wei
Li, Cairong
Wang, Jianghua
Source :
Toxicological Sciences; Jun2012, Vol. 127 Issue 2, p485-495, 11p
Publication Year :
2012

Abstract

Cyanobacteria-derived microcystin-leucine-arginine (MCLR), commonly characterized as a hepatotoxin, has recently been found to show neurotoxicity, but the exact mechanism is still unknown. To further our understanding of the neurotoxic effects of MCLR and the mechanisms behind it, we used two-dimensional gel electrophoresis and mass spectrometry analysis to identify global protein profiles associated with MCLR-induced neurotoxicity. MCLR-treated hippocampi showed alterations in proteins involved in cytoskeleton, neurodegenerative disease, oxidative stress, apoptosis, and energy metabolism. After validation by Western blot and quantitative real-time PCR, the expressions of three proteins related to neurodegenerative disease, septin 5, α-internexin, and α-synuclein, were identified to be altered by MCLR exposure. Based on our proteomic analysis that MCLR toxicity might be linked to neurodegeneration, we examined the activity of serine/threonine-specific protein phosphatases (PPs), which are markers of neurodegenerative disease. MCLR was found to induce inhibition of PPs and abnormal hyperphosphorylation of the neuronal microtubule–associated protein tau. This was found to lead to impairment of learning and memory, accompanied by severe histological damage and neuronal apoptosis in the hippocampal CA1 regions of rats. Our results support the hypothesis that MCLR could induce neurotoxic effects, the reason for which could be attributed to the disruption of the cytoskeleton, oxidative stress, and inhibition of PPs in the hippocampus. Moreover, MCLR was found to induce tau hyperphosphorylation, spatial memory impairment, neuronal degenerative changes, and apoptosis, suggesting that this cyanotoxin may contribute to Alzheimer's disease in humans. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
10966080
Volume :
127
Issue :
2
Database :
Complementary Index
Journal :
Toxicological Sciences
Publication Type :
Academic Journal
Accession number :
75701647
Full Text :
https://doi.org/10.1093/toxsci/kfs114