Back to Search Start Over

The Complete Genome Sequence of Thermoproteus tenax: A Physiologically Versatile Member of the Crenarchaeota.

Authors :
Siebers, Bettina
Zaparty, Melanie
Raddatz, Guenter
Tjaden, Britta
Albers, Sonja-Verena
Bell, Steve D.
Blombach, Fabian
Kletzin, Arnulf
Kyrpides, Nikos
Lanz, Christa
Plagens, André
Rampp, Markus
Rosinus, Andrea
Jan, Mathias von
Makarova, Kira S.
Klenk, Hans-Peter
Schuster, Stephan C.
Hensel, Reinhard
Source :
PLoS ONE; 2011, Vol. 6 Issue 10, p1-13, 13p
Publication Year :
2011

Abstract

Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078<superscript>T</superscript>) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO<subscript>2</subscript>/H<subscript>2</subscript>) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A<subscript>0</subscript>A<subscript>1</subscript>-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
6
Issue :
10
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
73889752
Full Text :
https://doi.org/10.1371/journal.pone.0024222