Back to Search Start Over

Eulerian Finite-Element Technique for Analysis of Jack-Up Spudcan Penetration.

Authors :
Tho, Kee Kiat
Leung, Chun Fai
Chow, Yean Khow
Swaddiwudhipong, Somsak
Source :
International Journal of Geomechanics; Feb2012, Vol. 12 Issue 1, p64-73, 10p, 1 Color Photograph, 5 Diagrams, 1 Chart, 12 Graphs
Publication Year :
2012

Abstract

The numerical analysis of an object penetrating deep into the seabed is a fundamentally challenging problem. This paper presents the application of a novel Eulerian-based finite-element technique to simulate the continuous penetration of a jack-up spudcan foundation into seabed of different soil profiles. The finite-element mesh is kept stationary throughout the analysis and the material is allowed to move independent of the element nodal points. Consequently, termination of computing execution from severe mesh distortion does not occur despite the material undergoing large deformation. The first part of the paper elucidates the mesh density requirement, the effect of penetration rates, and factors influencing the simulation time. The applicability of the Eulerian finite-element model is then validated through comparison with published experimental data for different soil profiles. In general, the Eulerian finite-element model is able to replicate the experimental observations well. With the Eulerian approach, classical wished-in-place approximation in spudcan penetration analysis is no longer necessary and a more accurate continuous penetration simulation can be routinely performed with minimal user-intervention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15323641
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Geomechanics
Publication Type :
Academic Journal
Accession number :
72664365
Full Text :
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111