Back to Search
Start Over
Triple automorphisms of simple Lie algebras.
- Source :
- Czechoslovak Mathematical Journal; Dec2011, Vol. 61 Issue 4, p1007-1016, 10p
- Publication Year :
- 2011
-
Abstract
- An invertible linear map φ on a Lie algebra L is called a triple automorphism of it if φ([ x, [ y, z]]) = [ φ( x), [ φ( y), φ( z)]] for ∀ x, y, z ∈ L. Let g be a finite-dimensional simple Lie algebra of rank l defined over an algebraically closed field F of characteristic zero, p an arbitrary parabolic subalgebra of g. It is shown in this paper that an invertible linear map φ on p is a triple automorphism if and only if either φ itself is an automorphism of p or it is the composition of an automorphism of p and an extremal map of order 2. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00114642
- Volume :
- 61
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Czechoslovak Mathematical Journal
- Publication Type :
- Academic Journal
- Accession number :
- 70715677
- Full Text :
- https://doi.org/10.1007/s10587-011-0043-9