Back to Search Start Over

The Medicago genome provides insight into the evolution of rhizobial symbioses.

Authors :
Young, Nevin D.
Debellé, Frédéric
Oldroyd, Giles E. D.
Geurts, Rene
Cannon, Steven B.
Udvardi, Michael K.
Benedito, Vagner A.
Mayer, Klaus F. X.
Gouzy, Jérôme
Schoof, Heiko
Van de Peer, Yves
Proost, Sebastian
Cook, Douglas R.
Meyers, Blake C.
Spannagl, Manuel
Cheung, Foo
De Mita, Stéphane
Krishnakumar, Vivek
Gundlach, Heidrun
Zhou, Shiguo
Source :
Nature; 12/22/2011, Vol. 480 Issue 7378, p520-524, 5p, 3 Diagrams
Publication Year :
2011

Abstract

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ?94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
480
Issue :
7378
Database :
Complementary Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
69919404
Full Text :
https://doi.org/10.1038/nature10625