Back to Search
Start Over
Groups with few conjugacy classes.
- Source :
- Proceedings of the Edinburgh Mathematical Society; Jun2011, Vol. 54 Issue 2, p423-430, 8p
- Publication Year :
- 2011
-
Abstract
- Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer, $G=C_{p}\rtimes\smash{C_{\sqrt{p-1}}}$ and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 00130915
- Volume :
- 54
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Proceedings of the Edinburgh Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 66813938
- Full Text :
- https://doi.org/10.1017/S001309150900176X