Back to Search Start Over

Groups with few conjugacy classes.

Authors :
Héthelyi, László
Horváth, Erzsébet
Keller, Thomas Michael
Maróti, Attila
Source :
Proceedings of the Edinburgh Mathematical Society; Jun2011, Vol. 54 Issue 2, p423-430, 8p
Publication Year :
2011

Abstract

Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer, $G=C_{p}\rtimes\smash{C_{\sqrt{p-1}}}$ and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00130915
Volume :
54
Issue :
2
Database :
Complementary Index
Journal :
Proceedings of the Edinburgh Mathematical Society
Publication Type :
Academic Journal
Accession number :
66813938
Full Text :
https://doi.org/10.1017/S001309150900176X