Back to Search
Start Over
k-Anonymization in the Presence of Publisher Preferences.
- Source :
- IEEE Transactions on Knowledge & Data Engineering; Nov2011, Vol. 23 Issue 11, p1678-1690, 0p
- Publication Year :
- 2011
-
Abstract
- Privacy constraints are typically enforced on shared data that contain sensitive personal attributes. However, owing to its adverse effect on the utility of the data, information loss must be minimized while sanitizing the data. Existing methods for this purpose modify the data only to the extent necessary to satisfy the privacy constraints, thereby asserting that the information loss has been minimized. However, given the subjective nature of information loss, it is often difficult to justify such an assertion. In this paper, we propose an interactive procedure to generate a data generalization scheme that optimally meets the preferences of the data publisher. A data publisher guides the sanitization process by specifying aspirations in terms of desired achievement levels in the objectives. A reference direction based methodology is used to investigate neighborhood solutions if the generated scheme is not acceptable. This approach draws its power from the constructive input received from the publisher about the suitability of a solution before finding a new one. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10414347
- Volume :
- 23
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Knowledge & Data Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 65935162
- Full Text :
- https://doi.org/10.1109/TKDE.2011.106