Back to Search Start Over

Strength variability of single flax fibres.

Authors :
Aslan, Mustafa
Chinga-Carrasco, Gary
Sørensen, Bent F.
Madsen, Bo
Source :
Journal of Materials Science; Oct2011, Vol. 46 Issue 19, p6344-6354, 11p, 3 Black and White Photographs, 5 Diagrams, 5 Charts, 5 Graphs
Publication Year :
2011

Abstract

Due to the typical large variability in the measured mechanical properties of flax fibres, they are often employed only in low grade composite applications. The present study aims to investigate the reasons for the variability in tensile properties of flax fibres. It is found that an inaccuracy in the determination of the cross-sectional area of the fibres is one major reason for the variability in properties. By applying a typical circular fibre area assumption, a considerable error is introduced into the calculated mechanical properties. Experimental data, together with a simple analytical model, are presented to show that the error is increased when the aspect ratio of the fibre cross-sectional shape is increased. A variability in properties due to the flax fibres themselves is found to originate from the distribution of defects along the fibres. Two distinctive types of stress-strain behaviours (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress-strain curves tend to show a higher tensile strength, a higher Young's modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex microscale failure mechanism. Large fracture zones are governed by both surface and internal defects; and these cause cracks to propagate in the transverse and longitudinal directions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00222461
Volume :
46
Issue :
19
Database :
Complementary Index
Journal :
Journal of Materials Science
Publication Type :
Academic Journal
Accession number :
62614110
Full Text :
https://doi.org/10.1007/s10853-011-5581-x