Back to Search Start Over

Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation.

Authors :
Tuia, Devis
Verrelst, Jochem
Alonso, Luis
Perez-Cruz, Fernando
Camps-Valls, Gustavo
Source :
IEEE Geoscience & Remote Sensing Letters; Oct2011, Vol. 8 Issue 4, p804-808, 5p
Publication Year :
2011

Abstract

This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an \varepsilon-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
1545598X
Volume :
8
Issue :
4
Database :
Complementary Index
Journal :
IEEE Geoscience & Remote Sensing Letters
Publication Type :
Academic Journal
Accession number :
62026566
Full Text :
https://doi.org/10.1109/LGRS.2011.2109934