Back to Search
Start Over
Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation.
- Source :
- IEEE Geoscience & Remote Sensing Letters; Oct2011, Vol. 8 Issue 4, p804-808, 5p
- Publication Year :
- 2011
-
Abstract
- This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an \varepsilon-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 1545598X
- Volume :
- 8
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- IEEE Geoscience & Remote Sensing Letters
- Publication Type :
- Academic Journal
- Accession number :
- 62026566
- Full Text :
- https://doi.org/10.1109/LGRS.2011.2109934