Back to Search Start Over

Synchrotron-based X-ray fluorescence, imaging and elemental mapping from biological samples.

Authors :
RAO, D
SWAPNA, M
CESAREO, R
BRUNETTI, A
AKATSUKA, T
YUASA, T
TAKEDA, T
GIGANTE, G
Source :
Pramana: Journal of Physics; Feb2011, Vol. 76 Issue 2, p261-269, 9p
Publication Year :
2011

Abstract

The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of ∼10 μm, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a 'step-and-repeat' mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulated trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03044289
Volume :
76
Issue :
2
Database :
Complementary Index
Journal :
Pramana: Journal of Physics
Publication Type :
Academic Journal
Accession number :
61072575
Full Text :
https://doi.org/10.1007/s12043-011-0031-5