Back to Search Start Over

A novel TLR3 inhibitor encoded by African swine fever virus (ASFV).

Authors :
Oliveira, V.
Almeida, S.
Soares, H.
Crespo, A.
Marshall-Clarke, S.
Parkhouse, R.
Source :
Archives of Virology; Apr2011, Vol. 156 Issue 4, p597-609, 13p
Publication Year :
2011

Abstract

frican swine fever virus (ASFV) encodes proteins that manipulate important host antiviral mechanisms. Bioinformatic analysis of the ASFV genome revealed ORF I329L, a gene without any previous functional characterization as a possible inhibitor of TLR signaling. We demonstrate that ORF I329L encodes a highly glycosylated protein expressed in the cell membrane and on its surface. I329L also inhibited dsRNA-stimulated activation of NFκB and IRF3, two key players in innate immunity. Consistent with this, expression of I329L protein also inhibited the activation of interferon-β and CCL5. Finally, overexpression of TRIF reversed I329L-mediated inhibition of both NFκB and IRF3 activation. Our results suggest that TRIF, a key MyD88-independent adaptor molecule, is a possible target of this viral host modulation gene. The demonstration of an ASFV host evasion molecule inhibiting TLR responses is consistent with the ability of this virus to infect vertebrate and invertebrate hosts, both of which deploy innate immunity controlled by conserved TLR systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03048608
Volume :
156
Issue :
4
Database :
Complementary Index
Journal :
Archives of Virology
Publication Type :
Academic Journal
Accession number :
59650236
Full Text :
https://doi.org/10.1007/s00705-010-0894-7