Back to Search
Start Over
Stability of two cluster solutions in pulse coupled networks of neural oscillators.
- Source :
- Journal of Computational Neuroscience; Apr2011, Vol. 30 Issue 2, p427-445, 19p, 3 Diagrams, 4 Graphs
- Publication Year :
- 2011
-
Abstract
- Phase response curves (PRCs) have been widely used to study synchronization in neural circuits comprised of pacemaking neurons. They describe how the timing of the next spike in a given spontaneously firing neuron is affected by the phase at which an input from another neuron is received. Here we study two reciprocally coupled clusters of pulse coupled oscillatory neurons. The neurons within each cluster are presumed to be identical and identically pulse coupled, but not necessarily identical to those in the other cluster. We investigate a two cluster solution in which all oscillators are synchronized within each cluster, but in which the two clusters are phase locked at nonzero phase with each other. Intuitively, one might expect this solution to be stable only when synchrony within each isolated cluster is stable, but this is not the case. We prove rigorously the stability of the two cluster solution and show how reciprocal coupling can stabilize synchrony within clusters that cannot synchronize in isolation. These stability results for the two cluster solution suggest a mechanism by which reciprocal coupling between brain regions can induce local synchronization via the network feedback loop. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09295313
- Volume :
- 30
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Journal of Computational Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 59317166
- Full Text :
- https://doi.org/10.1007/s10827-010-0268-x