Back to Search
Start Over
Photoisomerization mechanism of 4-methylpyridine explored by electronic structure calculations and nonadiabatic dynamics simulations.
- Source :
- Journal of Chemical Physics; 1/28/2011, Vol. 134 Issue 4, p044307, 9p
- Publication Year :
- 2011
-
Abstract
- In the present paper, different electronic structure methods have been used to determine stationary and intersection structures on the ground (S0) and 1ππ* (S2) states of 4-methylpyridine, which is followed by adiabatic and nonadiabatic dynamics simulations to explore the mechanistic photoisomerization of 4-methylpyridine. Photoisomerization starts from the S2(1ππ*) state and overcomes a small barrier, leading to formation of the prefulvene isomer in the S0 state via a S2/S0 conical intersection. The ultrafast S2 → S0 nonradiative decay and low quantum yield for the photoisomerization reaction were well reproduced by the combined electronic structure calculation and dynamics simulation. The prefulvene isomer was assigned as a long-lived intermediate and suggested to isomerize to 4-methylpyridine directly in the previous study, which is not supported by the present calculation. The nonadiabatic dynamics simulation and electronic structure calculation reveal that the prefulvene isomer is a short-lived intermediate and isomerizes to benzvalene form very easily. The benzvalene form was predicted as the stable isomer in the present study and is probably the long-lived intermediate observed experimentally. A consecutive light and thermal isomerization cycle via Dewar isomer was determined and this cycle mechanism is different from that reported in the previous study. It should be pointed out that formation of Dewar isomer from the S2(1ππ*) state is not in competition with the isomerization to the prefulvene form. The Dewar structure observed experimentally may originate from other excited states. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 134
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 57679513
- Full Text :
- https://doi.org/10.1063/1.3547207