Back to Search Start Over

Comparison of the anelastic approximation with fully compressible equations for linear magnetoconvection and magnetic buoyancy.

Authors :
Berkoff, N. A.
Kersale, E.
Tobias, S. M.
Source :
Geophysical & Astrophysical Fluid Dynamics; Oct-Dec2010, Vol. 104 Issue 5/6, p545-563, 19p, 12 Graphs
Publication Year :
2010

Abstract

In this article we examine the range of applicability of the anelastic approximation, which is often used in describing the dynamics of geophysical and astrophysical flows. Specifically, we consider two linear problems: magnetoconvection and magnetic buoyancy, and compare the fully compressible solutions with those determined by solving the anelastic problem. We further compare a subsequent simplification introduced by Lantz [Dynamical behavior of magnetic fields in a stratified, convecting fluid layer. Ph.D. Thesis, Cornell University: Ithaca, U.S.A., 1992] with the anelastic formulation. We find that for the magnetoconvection problem the anelastic approximation works well if the departure from adiabaticity is small (as expected) and determine where the approximation breaks down. The results for magnetic buoyancy are less straightforward, with the accuracy of the approximation being determined by the growth rate of the instability. We argue that these results make it difficult to assess a priori whether the anelastic approximation will provide an accurate approximation to the fully compressible system for stably stratified problems. Thus, unlike the magnetoconvection problem, for magnetic buoyancy it is difficult to provide general rules as to when the anelastic approximation can be used. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03091929
Volume :
104
Issue :
5/6
Database :
Complementary Index
Journal :
Geophysical & Astrophysical Fluid Dynamics
Publication Type :
Academic Journal
Accession number :
55204982
Full Text :
https://doi.org/10.1080/03091929.2010.521747