Back to Search Start Over

Harmonic oscillator in twisted Moyal plane: Eigenvalue problem and relevant properties.

Authors :
Hounkonnou, Mahouton Norbert
Samary, Dine Ousmane
Source :
Journal of Mathematical Physics; Oct2010, Vol. 51 Issue 10, p102108, 11p
Publication Year :
2010

Abstract

This paper reports on a study of a harmonic oscillator (ho) in the twisted Moyal space, in a well defined matrix basis, generated by the vector fields X<subscript>a</subscript>=e<subscript>a</subscript><superscript>μ</superscript>(x)∂<subscript>μ</subscript>=(δ<subscript>a</subscript><superscript>μ</superscript>+ω<subscript>ab</subscript><superscript>μ</superscript>x<superscript>b</superscript>)∂<subscript>μ</subscript>, which induce a dynamical star product. The usual multiplication law can be hence reproduced in the ω<subscript>ab</subscript><superscript>μ</superscript> null limit. The star actions of creation and annihilation functions are explicitly computed. The ho states are infinitely degenerated with energies depending on the coordinate functions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00222488
Volume :
51
Issue :
10
Database :
Complementary Index
Journal :
Journal of Mathematical Physics
Publication Type :
Academic Journal
Accession number :
54858353
Full Text :
https://doi.org/10.1063/1.3496395