Back to Search
Start Over
Harmonic oscillator in twisted Moyal plane: Eigenvalue problem and relevant properties.
- Source :
- Journal of Mathematical Physics; Oct2010, Vol. 51 Issue 10, p102108, 11p
- Publication Year :
- 2010
-
Abstract
- This paper reports on a study of a harmonic oscillator (ho) in the twisted Moyal space, in a well defined matrix basis, generated by the vector fields X<subscript>a</subscript>=e<subscript>a</subscript><superscript>μ</superscript>(x)∂<subscript>μ</subscript>=(δ<subscript>a</subscript><superscript>μ</superscript>+ω<subscript>ab</subscript><superscript>μ</superscript>x<superscript>b</superscript>)∂<subscript>μ</subscript>, which induce a dynamical star product. The usual multiplication law can be hence reproduced in the ω<subscript>ab</subscript><superscript>μ</superscript> null limit. The star actions of creation and annihilation functions are explicitly computed. The ho states are infinitely degenerated with energies depending on the coordinate functions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00222488
- Volume :
- 51
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Journal of Mathematical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 54858353
- Full Text :
- https://doi.org/10.1063/1.3496395