Back to Search Start Over

Multitechnique characterization of adsorbed peptide and protein orientation: LK310 and Protein G B1.

Authors :
Baio, J. E.
Weidner, T.
Samuel, N. T.
McCrea, Keith
Baugh, Loren
Stayton, Patrick S.
Castner, David G.
Source :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics; Jul2010, Vol. 28 Issue 4, pC5D1-C5D8, 1p, 3 Diagrams, 1 Chart, 4 Graphs
Publication Year :
2010

Abstract

The ability to orient biologically active proteins on surfaces is a major challenge in the design, construction, and successful deployment of many medical technologies. As methods to orient biomolecules are developed, it is also essential to develop techniques that can accurately determine the orientation and structure of these materials. In this study, two model protein and peptide systems are presented to highlight the strengths of three surface analysis techniques for characterizing protein films: time-of-flight secondary-ion mass spectrometry (ToF-SIMS), sum-frequency generation (SFG) vibrational spectroscopy, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. First, the orientation of Protein G B1, a rigid 6 kDa domain covalently attached to a maleimide-functionalized self-assembled monolayer, was examined using ToF-SIMS. Although the thickness of the Protein G layer was similar to the ToF-SIMS sampling depth, orientation of Protein G was successfully determined by analyzing the C<subscript>2</subscript>H<subscript>5</subscript>S<superscript>+</superscript> intensity, a secondary-ion derived from a methionine residue located at one end of the protein. Next, the secondary structure of a 13-mer leucine-lysine peptide (LK3<subscript>10</subscript>) adsorbed onto hydrophilic quartz and hydrophobic fluorocarbon surfaces was examined. SFG spectra indicated that the peptide’s lysine side chains were ordered on the quartz surface, while the peptide’s leucine side chains were ordered on the fluorocarbon surface. NEXAFS results provided complementary information about the structure of the LK3<subscript>10</subscript> film and the orientations of amide bonds within the LK3<subscript>10</subscript> peptide. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21662746
Volume :
28
Issue :
4
Database :
Complementary Index
Journal :
Journal of Vacuum Science & Technology: Part B-Nanotechnology & Microelectronics
Publication Type :
Academic Journal
Accession number :
52616758
Full Text :
https://doi.org/10.1116/1.3456176