Back to Search Start Over

Convergence of the Iterated Aluthge Transform Sequence for Diagonalizable Matrices II: λ-Aluthge Transform.

Authors :
Antezana, Jorge
Pujals, Enrique
Stojanoff, Demetrio
Source :
Integral Equations & Operator Theory; Dec2008, Vol. 62 Issue 4, p465-488, 24p
Publication Year :
2008

Abstract

Let λ ∈ (0, 1) and let T be a r × r complex matrix with polar decomposition T = U| T|. Then the λ-Aluthge transform is defined by . Let $$\Delta^{n}_{\lambda} (T)$$ denote the n-times iterated Aluthge transform of T, $$n\, \in \, {\mathbb{N}}$$ . We prove that the sequence $${\{\Delta^{n}_{\lambda} (T)\}}_{n \in {\mathbb{N}}}$$ converges for every r × r diagonalizable matrix T. We show regularity results for the two parameter map $$(\lambda, T) \longmapsto \Delta^{\infty}_ {\lambda} (T)$$ , and we study for which matrices the map $$(0, 1) \ni \lambda \longmapsto \Delta^{\infty}_ {\lambda} (T)$$ is constant. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0378620X
Volume :
62
Issue :
4
Database :
Complementary Index
Journal :
Integral Equations & Operator Theory
Publication Type :
Academic Journal
Accession number :
50646103
Full Text :
https://doi.org/10.1007/s00020-008-1637-y