Back to Search
Start Over
A q-Analogue of Weber-Schafheitlin Integral of Bessel Functions.
- Source :
- Ramanujan Journal; Sep2000, Vol. 4 Issue 3, p251-265, 15p
- Publication Year :
- 2000
-
Abstract
- In an attempt to find a q-analogue of Weber and Schafheitlin's integral ∫<superscript>∞</superscript> <subscript>0</subscript> x<superscript>−ρ</superscript> J<subscript>μ</subscript> ( ax) J<subscript>ν</subscript> ( bx) dx which is discontinuous on the diagonal a = b the integral ∫<superscript>∞</superscript> <subscript>0</subscript> x<superscript>−ρ</superscript> J<superscript>(2)</superscript> <subscript>ν</subscript> ( a(1 − q) x; q) J<superscript>(1)</superscript> <subscript>μ</subscript> ( b(1 − q) x; q) dx is evaluated where J<superscript>(1)</superscript> <subscript>μ</subscript> ( x; q) and J<superscript>(2)</superscript> <subscript>μ</subscript> ( x; q) are two of Jackson's three q-Bessel functions. It is found that the question of discontinuity becomes irrelevant in this case. Evaluations of this integral are also made in some interesting special cases. A biorthogonality formula is found as well as a Neumann series expansion for x<superscript>ρ</superscript> in terms of J<superscript>(2)</superscript> <subscript>ν+1+2 n</subscript> ((1 − q) x; q). Finally, a q-Lommel function is introduced. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13824090
- Volume :
- 4
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Ramanujan Journal
- Publication Type :
- Academic Journal
- Accession number :
- 50031867
- Full Text :
- https://doi.org/10.1023/A:1009892718531