Back to Search Start Over

Direct numerical simulation of gas-solid two-phase mixing layer.

Authors :
Li, Wenchun
Hu, Guilin
Zhou, Zhe
Fan, Jianren
Cen, Kefa
Source :
Journal of Thermal Science; Mar2005, Vol. 14 Issue 1, p41-47, 7p
Publication Year :
2005

Abstract

In this paper, the spatially evolving of the higher Reynolds numbers gas-solid mixing layer under compressible conditions was investigated by a new direct numerical simulation technology. A high-resolution solver was performed for the gas-phase flow-field, particles with different Stokes numbers were traced by the Lagrangian approach based on one-way coupling. The processes of the vortex rolling up and pairing in the two-dimensional mixing layer were captured precisely. The large-scale structures developed from the initial inflow are characterized by the counter-rotating vortices. The mean velocity and the fluctuation intensities profiles agree well with the experimental data. Particles with smaller Stokes numbers accumulate at the vortex centers due to the smaller aerodynamic response time; particles with moderate Stokes numbers tend to orbit around individual streamwise vortices and in the periphery of paring vortices; particles with larger Stokes numbers disperse less evenly, showing a concentration distribution in the flow field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10032169
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Journal of Thermal Science
Publication Type :
Academic Journal
Accession number :
49674500
Full Text :
https://doi.org/10.1007/s11630-005-0038-7