Back to Search
Start Over
On the Uniform Convergence of the Generalized Bieberbach Polynomials in Regions with K-Quasiconformal Boundary.
- Source :
- Approximation Theory & its Applications; Mar2001, Vol. 17 Issue 1, p97-105, 9p
- Publication Year :
- 2001
-
Abstract
- Let G be a finite domain in the complex plane with K-quasicon formal boundary, z<subscript>0</subscript> be an arbitrary fixed point in G and p>0. Let π( z) be the conformal mapping from G onto the disk with radius r<subscript>0</subscript>>0 and centered at the origin 0, normalized by ϕ( z<subscript>0</subscript>) = 0 and ϕ( z<subscript>0</subscript>) = 1. Let us set $$\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $$ , and let π<subscript> n,p</subscript>( z) be the generalized Bieberbach polynomial of degree n for the pair ( G,z<subscript>0</subscript>) that minimizes the integral $$\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$$ in the class $$\mathop \prod \limits_n $$ of all polynomials of degree ≤ n and satisfying the conditions P<subscript> n</subscript>( z<subscript>0</subscript>) = 0 and P′<subscript> n</subscript>( z<subscript>0</subscript>) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π<subscript> n,p</subscript>( z) to ϕ<subscript> p</subscript>( z) on $$\bar G$$ in case of $$p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$$ . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10009221
- Volume :
- 17
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Approximation Theory & its Applications
- Publication Type :
- Academic Journal
- Accession number :
- 49576940
- Full Text :
- https://doi.org/10.1023/A:1015556417733