Back to Search Start Over

On the Uniform Convergence of the Generalized Bieberbach Polynomials in Regions with K-Quasiconformal Boundary.

Authors :
Cavus, Abdullah
Abdullayev, Fahreddin
Source :
Approximation Theory & its Applications; Mar2001, Vol. 17 Issue 1, p97-105, 9p
Publication Year :
2001

Abstract

Let G be a finite domain in the complex plane with K-quasicon formal boundary, z<subscript>0</subscript> be an arbitrary fixed point in G and p>0. Let π( z) be the conformal mapping from G onto the disk with radius r<subscript>0</subscript>>0 and centered at the origin 0, normalized by ϕ( z<subscript>0</subscript>) = 0 and ϕ( z<subscript>0</subscript>) = 1. Let us set $$\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $$ , and let π<subscript> n,p</subscript>( z) be the generalized Bieberbach polynomial of degree n for the pair ( G,z<subscript>0</subscript>) that minimizes the integral $$\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$$ in the class $$\mathop \prod \limits_n $$ of all polynomials of degree ≤ n and satisfying the conditions P<subscript> n</subscript>( z<subscript>0</subscript>) = 0 and P′<subscript> n</subscript>( z<subscript>0</subscript>) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π<subscript> n,p</subscript>( z) to ϕ<subscript> p</subscript>( z) on $$\bar G$$ in case of $$p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$$ . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10009221
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
Approximation Theory & its Applications
Publication Type :
Academic Journal
Accession number :
49576940
Full Text :
https://doi.org/10.1023/A:1015556417733