Back to Search Start Over

In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection.

Authors :
Camejo, Ana
Buchrieser, Carmen
Couvé, Elisabeth
Carvalho, Filipe
Reis, Olga
Ferreira, Pierre
Sousa, Sandra
Cossart, Pascale
Cabanes, Didier
Source :
PLoS Pathogens; May2009, Vol. 5 Issue 5, p1-22, 22p, 1 Color Photograph, 1 Diagram, 6 Charts, 5 Graphs
Publication Year :
2009

Abstract

Listeria monocytogenes is a human intracellular pathogen able to colonize host tissues after ingestion of contaminated food, causing severe invasive infections. In order to gain a better understanding of the nature of host-pathogen interactions, we studied the L. monocytogenes genome expression during mouse infection. In the spleen of infected mice, ≈20% of the Listeria genome is differentially expressed, essentially through gene activation, as compared to exponential growth in rich broth medium. Data presented here show that, during infection, Listeria is in an active multiplication phase, as revealed by the high expression of genes involved in replication, cell division and multiplication. In vivo bacterial growth requires increased expression of genes involved in adaptation of the bacterial metabolism and stress responses, in particular to oxidative stress. Listeria interaction with its host induces cell wall metabolism and surface expression of virulence factors. During infection, L. monocytogenes also activates subversion mechanisms of host defenses, including resistance to cationic peptides, peptidoglycan modifications and release of muramyl peptides. We show that the in vivo differential expression of the Listeria genome is coordinated by a complex regulatory network, with a central role for the PrfA-SigB interplay. In particular, L. monocytogenes up regulates in vivo the two major virulence regulators, PrfA and VirR, and their downstream effectors. Mutagenesis of in vivo induced genes allowed the identification of novel L. monocytogenes virulence factors, including an LPXTG surface protein, suggesting a role for S-layer glycoproteins and for cadmium efflux system in Listeria virulence. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
5
Issue :
5
Database :
Complementary Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
45437960
Full Text :
https://doi.org/10.1371/journal.ppat.1000449