Back to Search Start Over

Mesenchymal Stem Cells Promote Oligodendroglial Differentiation in Hippocampal Slice Cultures.

Authors :
Rivera, Francisco J.
Siebzehnrubl, Florian A.
Kandasamy, Mahesh
Couillard-Despres, Sebastien
Caioni, Massimiliano
Poehler, Anne-Maria
Berninger, Benedikt
Sandner, Beatrice
Bogdahn, Ulrich
Goetz, Magdalena
Bluemcke, Ingmar
Weidner, Norbert
Aigner, Ludwig
Source :
Cellular Physiology & Biochemistry (Karger AG); 2009, Vol. 24 Issue 3/4, p317-324, 8p, 2 Diagrams, 1 Graph
Publication Year :
2009

Abstract

We have previously shown that soluble factors derived from mesenchymal stem cells (MSCs) induce oligodendrogenic fate and differentiation in adult rat neural progenitors (NPCs) in vitro. Here, we investigated if this pro-oligodendrogenic effect is maintained after cells have been transplanted onto rat hippocampal slice cultures, a CNS-organotypic environment. We first tested whether NPCs, that were pre-differentiated in vitro by MSC-derived conditioned medium, would generate oligodendrocytes after transplantation. This approach resulted in the loss of grafted NPCs, suggesting that oligodendroglial pre-differentiated cells could not integrate in the tissue and therefore did not survive grafting. However, when NPCs together with MSCs were transplanted in situ into hippocampal slice cultures, the grafted NPCs survived and the majority of them differentiated into oligodendrocytes. In contrast to the prevalent oligodendroglial differentiation in case of the NPC/MSC co-transplantation, naïve NPCs transplanted in the absence of MSCs differentiated predominantly into astrocytes. In summary, the pro-oligodendrogenic activity of MSCs was maintained only after co-transplantation into hippocampal slice cultures. Therefore, in the otherwise astrogenic milieu, MSCs established an oligodendrogenic niche for transplanted NPCs, and thus, co-transplantation of MSCs with NPCs might provide an attractive approach to re-myelinate the various regions of the diseased CNS. Copyright © 2009 S. Karger AG, Basel [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10158987
Volume :
24
Issue :
3/4
Database :
Complementary Index
Journal :
Cellular Physiology & Biochemistry (Karger AG)
Publication Type :
Academic Journal
Accession number :
43549381
Full Text :
https://doi.org/10.1159/000233256