Back to Search
Start Over
A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism.
- Source :
- EMBO Journal; 7/1/2009, Vol. 28 Issue 13, p1831-1842, 12p, 4 Diagrams, 3 Graphs
- Publication Year :
- 2009
-
Abstract
- OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5-phosphatase domain followed by an ASH and a RhoGAP-like domain. Their divergent NH2-terminal portions remain uncharacterized. We show that the NH2-terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin-coated pits, was earlier shown to contain another binding site for clathrin in its COOH-terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2-terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin-binding site in OCRL maps to an unusual clathrin-box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin-dependent membrane trafficking. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02614189
- Volume :
- 28
- Issue :
- 13
- Database :
- Complementary Index
- Journal :
- EMBO Journal
- Publication Type :
- Academic Journal
- Accession number :
- 43017781
- Full Text :
- https://doi.org/10.1038/emboj.2009.155