Back to Search Start Over

A Probabilistic Generative Framework for Extractive Broadcast News Speech Summarization.

Authors :
Yi-Ting Chen
Chen, Berlin
Hsin-Min Wang
Source :
IEEE Transactions on Audio, Speech & Language Processing; Jan2009, Vol. 17 Issue 1, p95-106, 12p, 1 Diagram, 13 Charts
Publication Year :
2009

Abstract

In this paper, we consider extractive summarization of broadcast news speech and propose a unified probabilistic generative framework that combines the sentence generative probability and the sentence prior probability for sentence ranking. Each sentence of a spoken document to be summarized is treated as a probabilistic generative model for predicting the document. Two matching strategies, namely literal term matching and concept matching, are thoroughly investigated. We explore the use of the language model (LM) and the relevance model (RM) for literal term matching, while the sentence topical mixture model (STMM) and the word topical mixture model (WTMM) are used for concept matching. In addition, the lexical and prosodic features, as well as the relevance information of spoken sentences, are properly incorporated for the estimation of the sentence prior probability. An elegant feature of our proposed framework is that both the sentence generative probability and the sentence prior probability can be estimated in an unsupervised manner, without the need for handcrafted document-summary pairs. The experiments were performed on Chinese broadcast news collected in Taiwan, and very encouraging results were obtained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15587916
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
IEEE Transactions on Audio, Speech & Language Processing
Publication Type :
Academic Journal
Accession number :
38705177
Full Text :
https://doi.org/10.1109/TASL.2008.2005031