Back to Search
Start Over
The Impact of Snow Model Complexity at Three CLPX Sites.
- Source :
- Journal of Hydrometeorology; Dec2008, Vol. 9 Issue 6, p1464-1481, 18p, 2 Charts, 13 Graphs
- Publication Year :
- 2008
-
Abstract
- Many studies have developed snow process understanding by exploring the impact of snow model complexity on simulation performance. This paper revisits this topic using several recently developed land surface models, including the Simplified Simple Biosphere Model (SSiB); Noah; Variable Infiltration Capacity (VIC); Community Land Model, version 3 (CLM3); Snow Thermal Model (SNTHERM); and new field measurements from the Cold Land Processes Field Experiment (CLPX). Offline snow cover simulations using these five snow models with different physical complexity are performed for the Rabbit Ears Buffalo Pass (RB), Fraser Experimental Forest headquarters (FHQ), and Fraser Alpine (FA) sites between 20 September 2002 and 1 October 2003. These models simulate the snow accumulation and snowpack ablation with varying skill when forced with the same meteorological observations, initial conditions, and similar soil and vegetation parameters. All five models capture the basic features of snow cover dynamics but show remarkable discrepancy in depicting snow accumulation and ablation, which could result from uncertain model physics and/or biased forcing. The simulated snow depth in SSiB during the snow accumulation period is consistent with the more complicated CLM3 and SNTHERM; however, early runoff is noted, owing to neglected water retention within the snowpack. Noah is consistent with SSiB in simulating snow accumulation and ablation at RB and FA, but at FHQ, Noah underestimates snow depth and snow water equivalent (SWE) as a result of a higher net shortwave radiation at the surface, resulting from the use of a small predefined maximum snow albedo. VIC and SNTHERM are in good agreement with each other, and they realistically reproduce snow density and net radiation. CLM3 is consistent with VIC and SNTHERM during snow accumulation, but it shows early snow disappearance at FHQ and FA. It is also noted that VIC, CLM3, and SNTHERM are unable to capture the observed runoff timing, even though the water storage and refreezing effects are included in their physics. A set of sensitivity experiments suggest that Noah’s snow simulation is improved with a higher maximum albedo and that VIC exhibits little improvement with a larger fresh snow albedo. There are remarkable differences in the vegetation impact on snow simulation for each snow model. In the presence of forest cover, SSiB shows a substantial increase in snow depth and SWE, Noah and VIC show a slight change though VIC experiences a later onset of snowmelt, and CLM3 has a reduction in its snow depth. Finally, we observe that a refined precipitation dataset significantly improves snow simulation, emphasizing the importance of accurate meteorological forcing for land surface modeling. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1525755X
- Volume :
- 9
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Journal of Hydrometeorology
- Publication Type :
- Academic Journal
- Accession number :
- 35826529
- Full Text :
- https://doi.org/10.1175/2008JHM860.1