Back to Search
Start Over
Experimental and theoretical investigations of ionization/dissociation of cyclopentanone molecule in a femtosecond laser field.
- Source :
- Journal of Chemical Physics; 11/28/2008, Vol. 129 Issue 20, p204302, 15p, 5 Diagrams, 1 Chart, 12 Graphs
- Publication Year :
- 2008
-
Abstract
- The ionization/dissociation mechanism of cyclopentanone has been experimentally investigated in molecular beam by irradiating with intense 394 and 788 nm laser fields with pulse duration of 90 fs. The range of laser intensities varied from 3×10<superscript>13</superscript> to 4×10<superscript>14</superscript> W/cm<superscript>2</superscript>. For both wavelengths, the singly charged parent ion is observable while the doubly charged one cannot be found easily, although the fragmentation pattern supports its presence. Meanwhile, the extent of fragmentation at 788 nm is less than that in the 394 nm case. We quantitatively analyze the ionization processes of cyclopentanone in intense femtosecond laser by comparing the calculation results of ionization rate constants obtained from Ammosov-Delone-Krainov, Keldysh, and Keldysh-Faisal-Reiss (KFR) theories based on hydrogenlike atom model. We also compare the experimental and theoretical results; the generalized KFR theory is found to be useful in predicting the ionization yields of singly and doubly charged cyclopentanone ion. To interpret the dissociation patterns of the cyclopentanone ions, we have used the Rice-Ramsperger-Kassel-Marcus theory with the potential surfaces obtained from the ab initio quantum chemical calculations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 129
- Issue :
- 20
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 35541352
- Full Text :
- https://doi.org/10.1063/1.3006028