Back to Search Start Over

Evaluation of Characterization Techniques for Iron Pipe Corrosion Products and Iron Oxide Thin Films.

Authors :
Borch, Thomas
Camper, Anne K.
Biederman, Joel A.
Butterfield, Phillip W.
Gerlach, Robin
Amonette, James E.
Source :
Journal of Environmental Engineering; Oct2008, Vol. 134 Issue 10, p835-844, 10p, 2 Black and White Photographs, 3 Charts, 3 Graphs
Publication Year :
2008

Abstract

A common problem faced by drinking water studies is that of properly characterizing the corrosion products (CP) in iron pipes or synthetic Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. The present work compares the relative applicability of a suite of imaging and analytical techniques for the characterization of CPs and synthetic Fe oxide thin films and provide an overview of the type of data that each instrument can provide as well as their limitations to help researchers and consultants choose the best technique for a given task. Crushed CP from a water distribution system and synthetic Fe oxide thin films formed on glass surfaces were chosen as test samples for this evaluation. The CP and synthetic Fe oxide thin films were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray powder diffractometry (XRD), grazing incident diffractometry (GID), transmission electron microscopy (TEM), selected area electron diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared, Mössbauer spectroscopy, Brunauer–Emmett–Teller N<subscript>2</subscript> adsorption and Fe concentration was determined by the ferrozine method. XRD and GID were found to be the most suitable techniques for identification of the mineralogical composition of CP and synthetic Fe oxide thin films, respectively. AFM and a combined ToF-SIMS–AFM approach proved excellent for roughness and depth profiling analysis of synthetic Fe oxide thin films, respectively. Corrosion products were difficult to study by AFM due to their surface roughness, while synthetic Fe oxide thin films resisted most spectroscopic methods due to their limited thickness (118 nm). XPS analysis is not recommended for mixtures of Fe (hydr)oxides due to their spectral similarities. SEM and TEM provided great detail on mineralogical morphology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07339372
Volume :
134
Issue :
10
Database :
Complementary Index
Journal :
Journal of Environmental Engineering
Publication Type :
Academic Journal
Accession number :
34297419
Full Text :
https://doi.org/10.1061/(ASCE)0733-9372(2008)134:10(835)