Back to Search Start Over

Basic Sets in the Digital Plane.

Authors :
Hutchison, David
Kanade, Takeo
Kittler, Josef
Kleinberg, Jon M.
Mattern, Friedemann
Mitchell, John C.
Naor, Moni
Nierstrasz, Oscar
Pandu Rangan, C.
Steffen, Bernhard
Sudan, Madhu
Terzopoulos, Demetri
Tygar, Doug
Vardi, Moshe Y.
Weikum, Gerhard
Geffert, Viliam
Karhumäki, Juhani
Bertoni, Alberto
Preneel, Bart
Návrat, Pavol
Source :
SOFSEM 2008: Theory & Practice of Computer Science; 2008, p376-387, 12p
Publication Year :
2008

Abstract

A set K in the plane ℝ2 is basic if each continuous function $f \: K \to \mathbb R$ can be expressed as a sum f(x,y) = g(x) + h(y) with $g, h \: \mathbb R \to \mathbb R$ continuous functions. Analogously we define a digital set Kk in the digital plane to be basic if for each digital function $f: {K_k} \to {\mathbb R}$ there exist digital functions on the digital unit interval such that f(x,y) = g(x) + h(y) for each pixel (x,y) ∈ Kk. Basic subsets of the plane were characterized by Sternfeld and Skopenkov. In this paper we prove a digital analogy of this result. Moreover we explore the properties of digital basic sets, and their possible use in image analysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540775652
Database :
Complementary Index
Journal :
SOFSEM 2008: Theory & Practice of Computer Science
Publication Type :
Book
Accession number :
33770741
Full Text :
https://doi.org/10.1007/978-3-540-77566-9_32