Back to Search Start Over

A Multiple Classifier Approach for the Recognition of Screen-Rendered Text.

Authors :
Hutchison, David
Kanade, Takeo
Kittler, Josef
Kleinberg, Jon M.
Mattern, Friedemann
Mitchell, John C.
Naor, Moni
Nierstrasz, Oscar
Pandu Rangan, C.
Steffen, Bernhard
Sudan, Madhu
Terzopoulos, Demetri
Tygar, Doug
Vardi, Moshe Y.
Weikum, Gerhard
Kropatsch, Walter G.
Kampel, Martin
Hanbury, Allan
Wachenfeld, Steffen
Fleischer, Stefan
Source :
Computer Analysis of Images & Patterns (9783540742715); 2007, p921-928, 8p
Publication Year :
2007

Abstract

The lower the resolution of a given text is, the more difficult it becomes to segment and to recognize it. The resolution of screen-rendered text can be very low. With a typical x-height of 4 to 7 pixels it is much lower as in other low resolution OCR situations. Modern OCR approaches for such very low resolution text use a classification-based segmentation where the underlying classifier plays an important role. This paper presents a multiple classifier system for the classification of single characters. This system is used as a subsystem for the classification-based segmentation within a system to read screen-rendered text. The paper shows that the presented multiple classifier system outperforms the best former single classifier system on single characters by far and it shows the impact of using the multiple classifier system on the word reading performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540742715
Database :
Complementary Index
Journal :
Computer Analysis of Images & Patterns (9783540742715)
Publication Type :
Book
Accession number :
33316573
Full Text :
https://doi.org/10.1007/978-3-540-74272-2_114