Back to Search Start Over

Shape Signature Matching for Object Identification Invariant to Image Transformations and Occlusion.

Authors :
Hutchison, David
Kanade, Takeo
Kittler, Josef
Kleinberg, Jon M.
Mattern, Friedemann
Mitchell, John C.
Naor, Moni
Nierstrasz, Oscar
Pandu Rangan, C.
Steffen, Bernhard
Sudan, Madhu
Terzopoulos, Demetri
Tygar, Doug
Vardi, Moshe Y.
Weikum, Gerhard
Kropatsch, Walter G.
Kampel, Martin
Hanbury, Allan
Giannarou, Stamatia
Stathaki, Tania
Source :
Computer Analysis of Images & Patterns (9783540742715); 2007, p710-717, 8p
Publication Year :
2007

Abstract

This paper introduces a novel shape matching approach for the automatic identification of real world objects in complex scenes. The identification process is applied on isolated objects and requires the segmentation of the image into separate objects, followed by the extraction of representative shape features and the similarity estimation of pairs of objects. In order to enable an efficient object representation, a novel boundary-based shape descriptor is introduced, formed by a set of one dimensional signals called shape signatures. During identification, the cross-correlation metric is used in a novel fashion to gauge the degree of similarity between objects. The invariance of the method to uniform-scaling and partial occlusion is achieved by considering both cases as possible scenarios when correlating shape signatures. The proposed vision system is robust to ambient conditions (partial occlusion) and image transformations (scaling, rotation, translation). The performance of the identifier has been examined in a great range of complex image and prototype object selections. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540742715
Database :
Complementary Index
Journal :
Computer Analysis of Images & Patterns (9783540742715)
Publication Type :
Book
Accession number :
33316547
Full Text :
https://doi.org/10.1007/978-3-540-74272-2_88