Back to Search Start Over

Design Strategies for Minimal Perfect Hash Functions.

Authors :
Hutchison, David
Kanade, Takeo
Kittler, Josef
Kleinberg, Jon M.
Mattern, Friedemann
Mitchell, John C.
Naor, Moni
Nierstrasz, Oscar
Pandu Rangan, C.
Steffen, Bernhard
Sudan, Madhu
Terzopoulos, Demetri
Tygar, Doug
Vardi, Moshe Y.
Weikum, Gerhard
Hromkovič, Juraj
Královič, Richard
Nunkesser, Marc
Widmayer, Peter
Dietzfelbinger, Martin
Source :
Stochastic Algorithms: Foundations & Applications (9783540748700); 2007, p2-17, 16p
Publication Year :
2007

Abstract

A minimal perfect hash function h for a set S ⊆ U of size n is a function $h\colon U\to \{0,\ldots,n-1\}$ that is one-to-one on S. The complexity measures of interest are storage space for h, evaluation time (which should be constant), and construction time. The talk gives an overview of several recent randomized constructions of minimal perfect hash functions, leading to space-efficient solutions that are fast in practice. A central issue is a method ("split-and-share") that makes it possible to assume that fully random (hash) functions are available. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540748700
Database :
Complementary Index
Journal :
Stochastic Algorithms: Foundations & Applications (9783540748700)
Publication Type :
Book
Accession number :
33176144
Full Text :
https://doi.org/10.1007/978-3-540-74871-7_2