Back to Search
Start Over
Robust Speech Endpoint Detection Based on Improved Adaptive Band-Partitioning Spectral Entropy.
- Source :
- Bio-Inspired Computational Intelligence & Applications; 2007, p36-45, 10p
- Publication Year :
- 2007
-
Abstract
- The performance of speech recognition system is often degraded in adverse environments. Accurate Speech endpoint detection is very important for robust speech recognition. In this paper, an improved adaptive band-partitioning spectral entropy algorithm was proposed for speech endpoint detection, which utilized the weighted power spectral subtraction to boost up the signal-to-noise ratio (SNR) as well as keep the robustness. The idea of adaptive band-partitioning spectral entropy is to divide a frame into some sub-bands which the number of it could be selected adaptively, and calculate spectral entropy of them. Although it has good robustness, the accuracy degrades rapidly when the SNR are low. Therefore, the weighted power spectral subtraction is presented for reducing the spectral effects of acoustically added noise in speech. The speech recognition experiment results indicate that the recognition accuracy have improved well in adverse environments. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISBNs :
- 9783540747680
- Database :
- Complementary Index
- Journal :
- Bio-Inspired Computational Intelligence & Applications
- Publication Type :
- Book
- Accession number :
- 33107471
- Full Text :
- https://doi.org/10.1007/978-3-540-74769-7_5