Back to Search Start Over

Abstract Geometrical Computation: Turing-Computing Ability and Undecidability.

Authors :
Cooper, S. Barry
Löwe, Benedikt
Torenvliet, Leen
Durand-Lose, Jérôme
Source :
New Computational Paradigms; 2005, p106-116, 11p
Publication Year :
2005

Abstract

In the Cellular Automata (CA) literature, discrete lines inside (discrete) space-time diagrams are often idealized as Euclidean lines in order to analyze a dynamics or to design CA for special purposes. In this article, we present a parallel analog model of computation corresponding to this idealization: dimensionless signals are moving on a continuous space in continuous time generating Euclidean lines on (continuous) space-time diagrams. Like CA, this model is parallel, synchronous, uniform in space and time, and uses local updating. The main difference is that space and time are continuous and not discrete (ie instead of ). In this article, the model is restricted to in order to remain inside Turing-computation theory. We prove that our model can carry out any Turing-computation through two-counter automata simulation and provide some undecidability results. Keywords: Abstract geometrical computation, Analog model of computation, Cellular automata, Geometry, Turing universality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540261797
Database :
Complementary Index
Journal :
New Computational Paradigms
Publication Type :
Book
Accession number :
32906820
Full Text :
https://doi.org/10.1007/11494645_14