Back to Search Start Over

Heterogeneous directional mobility in the early stages of polymer crystallization.

Authors :
Lacevic, Naida
Fried, Laurence E.
Gee, Richard H.
Source :
Journal of Chemical Physics; 1/7/2008, Vol. 128 Issue 1, p014903, 7p, 1 Black and White Photograph, 2 Diagrams, 4 Graphs
Publication Year :
2008

Abstract

Recently, we demonstrated via large-scale molecular dynamics simulations a “coexistence period” in polymer melt ordering before crystallization, where nucleation and growth mechanisms coexist with a phase-separation mechanism [Gee et al., Nat. Mater. 5, 39 (2006)]. Here, we present an extension of this work, where we analyze the directional displacements as a measure of the mobility of monomers as they order during crystallization over more than 100 ns of simulation time. It is found that the polymer melt, after quenching, rapidly separates into many ordered hexagonal domains separated by amorphous regions, where surprisingly, the magnitude of the monomer’s displacement in the ordered state, parallel to the domain axial direction, is similar to its magnitude in the melt. The monomer displacements in the domain’s lateral direction are found to decrease during the time of the simulation. The ordered hexagonal domains do not align into uniform lamellar structures during the timescales of our simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
128
Issue :
1
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
28333194
Full Text :
https://doi.org/10.1063/1.2813896