Back to Search Start Over

Combination of 13C/113Cd NMR, potentiometry, and voltammetry in characterizing the interactions between Cd and two models of the main components of soil organic matter.

Authors :
Lenoble, V.
Garnier, C.
Masion, A.
Ziarelli, F.
Garnier, J. M.
Source :
Analytical & Bioanalytical Chemistry; Jan2008, Vol. 390 Issue 2, p749-757, 9p, 3 Charts, 4 Graphs
Publication Year :
2008

Abstract

This work allowed the characterization of the Cd-binding sites of two compounds taken as models for exudates, the main components of soil organic matter (SOM). The studied compounds were exopolysaccharides (EPS), specifically exudates of roots (polygalacturonic acid) and of soil bacteria (Phytagel). Potentiometric acid–base titrations were performed and fitting of the obtained results indicated the presence of two main classes of acidic sites, defined by their p K <subscript>a</subscript> values, for both EPS but of a different nature when comparing the two compounds. The two studied exopolysaccharides presented different acidic/basic site ratios: 0.15 for Phytagel and 0.76 for polygalacturonic acid. Spectroscopic techniques (<superscript>13</superscript>C/<superscript>113</superscript>Cd NMR, FTIR) distinguished different Cd surroundings for each of the studied EPS, which is in agreement with the titration results. Furthermore, these analyses indicated the presence of –COOH and –OH groups in various proportions for each exopolysaccharide, which should be linked to their reactivity towards cadmium. Cadmium titrations (voltammetric measurements) also differentiated different binding sites for each compound and allowed the determination of the strength of the Cd-binding site of the EPS. Fitting of the results of such voltammetric measurements was performed using PROSECE ( Programme d’Optimisation et de Speciation Chimique dans l’Environnement), a software coupling chemical speciation calculation and binding parameter optimization. The fitting, taking into account the Cd<superscript>2+</superscript>/H<superscript>+</superscript> competition towards exopolysaccharides, confirmed the acid-base titrations and spectroscopic analyses by revealing two classes of binding sites: (i) one defined as a strong complexant regarding its Cd<superscript>2+</superscript>–EPS association (log K = 9–10.4) and with basic functionality regarding H<superscript>+</superscript>–EPS association (p K <subscript>a</subscript> = 11.3–11.7), and (ii) one defined as a weak complexant (log K = 7.1–8.2) and with acidic functionality (p K <subscript>a</subscript> = 3.7–4.0). Therefore the combination of spectroscopic analyses, voltammetry, and fitting allowed the precise characterization of the binding sites of the studied exopolysaccharides, mimicking the main SOM components. Furthermore, the binding parameters obtained by fitting can be used in biogeochemical models to better define the role of key SOM compounds like exudates of roots and of soil bacteria on trace metal transport or assimilation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16182642
Volume :
390
Issue :
2
Database :
Complementary Index
Journal :
Analytical & Bioanalytical Chemistry
Publication Type :
Academic Journal
Accession number :
28110504
Full Text :
https://doi.org/10.1007/s00216-007-1678-0