Back to Search Start Over

Er3+ diffusion in congruent LiNbO3 crystal doped with 4.5 mol % MgO.

Authors :
Zhang, De-Long
Hua, Ping-Rang
Pun, E. Y. B.
Source :
Journal of Applied Physics; 6/1/2007, Vol. 101 Issue 11, p113513, 6p, 1 Diagram, 4 Graphs
Publication Year :
2007

Abstract

Standard thermal diffusion of Er<superscript>3+</superscript> into X-cut congruent LiNbO<subscript>3</subscript> crystal with the MgO doping level close to the antiphotorefractive threshold concentration, 4.5 mol%, was attempted at the temperature close to Curie point of the crystal. Single-crystal x-ray diffraction, photoluminescence spectroscopy and secondary ion mass spectrometry (SIMS) were used to study the crystalline phase with respect to Er<superscript>3+</superscript> ions and the depth profile of the diffused Er<superscript>3+</superscript> ions. The results show that the thickness of the Er metal film coating should not be thicker than 4.6 nm. In this case, the diffusion is complete, the diffused surface is clean, and the Er<superscript>3+</superscript> ions in the diffused layer still retain the LiNbO<subscript>3</subscript> phase. On the other hand, the diffusion will be incomplete if the initial thickness of the Er metal film is thicker than 4.6 nm. The residual Er<superscript>3+</superscript> ions form ErNbO<subscript>4</subscript> grains on the surface of the crystal. SIMS analysis shows that the diffused Er<superscript>3+</superscript> ions follow a monoexponential decay profile. The experimental results also show that the diffusivity of Er<superscript>3+</superscript> in the X-cut congruent Mg(4.5 mol %):LiNbO<subscript>3</subscript> is similar to 4.69×10<superscript>-3</superscript> μm<superscript>2</superscript>/h at 1130 °C. Further vapor transport equilibration treatment following the standard diffusion procedure results in transformation of the diffused Er<superscript>3+</superscript> ions from LiNbO<subscript>3</subscript> into the ErNbO<subscript>4</subscript> phase and, hence, substantial spectral change of the 1.5 μm emission. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
101
Issue :
11
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
25484504
Full Text :
https://doi.org/10.1063/1.2737354