Back to Search Start Over

Combined DFT, QCISD(T), and G2 mechanism investigation for the reactions of carbon monophosphide CP with unsaturated hydrocarbons allene CH2CCH2 and methylacetylene CH3CCH.

Authors :
Zhao Yan-Li
Wei Kan
Hua Zhong
Hai-Tao Yu
Hong-Gang Fu
Source :
Journal of Computational Chemistry; 2007, Vol. 28 Issue 7, p1221-1233, 13p, 6 Diagrams, 4 Charts, 1 Graph
Publication Year :
2007

Abstract

The possible reaction product distribution and mechanism of carbon monophosphide CP with unsaturated hydrocarbons allene CH<subscript>2</subscript>CCH<subscript>2</subscript> and methylacetylene CH<subscript>3</subscript>CCH are investigated at the B3LYP/6-311+G(d,p), QCISD(T)/6-311++G(2df,2p), and G2 levels of theory. Corresponding reactants, products, intermediates, and interconversion and dissociation transition states are located on the reaction potential energy profiles. Computation results show that in the reaction of CP with CH<subscript>2</subscript>CCH<subscript>2</subscript> the dominant reaction product should be species CH<subscript>2</subscript>CCHCP. Also, we can suggest species HCCCH<subscript>2</subscript>CP as a secondary reaction product despite of only minor contribution to reaction products. In the reaction of CP with CH<subscript>3</subscript>CCH, the primary and secondary products are suggested to be two important molecules HCCCP and CH<subscript>3</subscript>CCCP, respectively. The predicted mechanisms for the two reactions are not in parallel with the reactions of CN with allene CH<subscript>2</subscript>CCH<subscript>2</subscript> and methylacetylene CH<subscript>3</subscript>CCH given in previous studies. The present calculations provide some useful information for future possible experimental isolation and observation for some interesting unsaturated carbon–phosphorus-bearing species. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01928651
Volume :
28
Issue :
7
Database :
Complementary Index
Journal :
Journal of Computational Chemistry
Publication Type :
Academic Journal
Accession number :
24490617
Full Text :
https://doi.org/10.1002/jcc.20611