Back to Search
Start Over
Optimal Weyl-type Inequalities for Operators in Banach Spaces.
- Source :
- Positivity; Feb2007, Vol. 11 Issue 1, p41-55, 15p
- Publication Year :
- 2007
-
Abstract
- Abstract??Let (s<subscript>n</subscript>) be ans-number sequence. We show for eachk= 1, 2, . . . and n ?k+ 1 the inequalitybetween the eigenvalues ands-numbers of a compact operatorTin a Banach space. Furthermore, the constant (k+ 1)<superscript>1/2</superscript>is optimal forn=k+ 1 andk= 1, 2, . . .. This inequality seems to be an appropriate tool for estimating the first single eigenvalues. On the other hand we prove that the Weyl numbers form a minimal multiplicatives-number sequence and by a well-known inequality between eigenvalues and Weyl numbers due to A. Pietsch they are very good quantities for investigating the optimal asymptotic behavior of eigenvalues. [ABSTRACT FROM AUTHOR]
- Subjects :
- MATRICES (Mathematics)
COMPLEX variables
EIGENVALUES
GENERALIZED spaces
Subjects
Details
- Language :
- English
- ISSN :
- 13851292
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Positivity
- Publication Type :
- Academic Journal
- Accession number :
- 23877140
- Full Text :
- https://doi.org/10.1007/s11117-006-1088-0