Back to Search Start Over

Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought.

Authors :
Qaderi, Mirwais M.
Kurepin, Leonid V.
Reid, David M.
Source :
Physiologia Plantarum; Dec2006, Vol. 128 Issue 4, p710-721, 12p, 7 Graphs
Publication Year :
2006

Abstract

Elevated CO<subscript>2</subscript> appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO<subscript>2</subscript>, temperature and drought on plant growth and physiology. We grew canola (Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol<superscript>−1</superscript>) and elevated (740 μmol mol<superscript>−1</superscript>) CO<subscript>2</subscript> levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO<subscript>2</subscript> had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO<subscript>2</subscript> assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO<subscript>2</subscript> generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO<subscript>2</subscript> partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00319317
Volume :
128
Issue :
4
Database :
Complementary Index
Journal :
Physiologia Plantarum
Publication Type :
Academic Journal
Accession number :
23064954
Full Text :
https://doi.org/10.1111/j.1399-3054.2006.00804.x