Back to Search Start Over

Assessing Convergence of Markov Chain Monte Carlo Simulations in Hierarchical Bayesian Models for Population Pharmacokinetics.

Authors :
Michael G. Dodds
Paolo Vicini
Source :
Annals of Biomedical Engineering; Sep2004, Vol. 32 Issue 9, p1300-1313, 14p
Publication Year :
2004

Abstract

Advances in computer hardware and the associated computer-intensive algorithms made feasible by these advances [like Markov chain Monte Carlo (MCMC) data analysis techniques] have made possible the application of hierarchical full Bayesian methods in analyzing pharmacokinetic and pharmacodynamic (PK-PD) data sets that are multivariate in nature. Pharmacokinetic data analysis in particular has been one area that has seized upon this technology to refine estimates of drug parameters from sparse data gathered in a large, highly variable population of patients. A drawback in this type of analysis is that it is difficult to quantitatively assess convergence of the Markov chains to a target distribution, and thus, it is sometimes difficult to assess the reliability of estimates gained from this procedure. Another complicating factor is that, although the application of MCMC methods to population PK-PD problems has been facilitated by new software designed for the PK-PD domain (specifically PKBUGS), experts in PK-PD may not have the necessary experience with MCMC methods to detect and understand problems with model convergence. The objective of this work is to provide an example of a set of diagnostics useful to investigators, by analyzing in detail three convergence criteria (namely the Raftery and Lewis, Geweke, and Heidelberger and Welch methods) on a simulated problem and with a rule of thumb of 10,000 chain elements in the Markov chain. We used two publicly available software packages to assess convergence of MCMC parameter estimates; the first performs Bayesian parameter estimation (PKBUGS/WinBUGS), and the second is focused on posterior analysis of estimates (BOA). The main message that seems to emerge is that accurately estimating confidence regions for the parameters of interest is more demanding than estimating the parameter means. Together, these tools provide numerical means by which an investigator can establish confidence in convergence and thus in the estimated parameters derived from hierarchical full Bayesian pharmacokinetic data analysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00906964
Volume :
32
Issue :
9
Database :
Complementary Index
Journal :
Annals of Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
22166249