Back to Search Start Over

ATM stabilizes DNA double-strand-break complexes during V(D)J recombination.

Authors :
Bredemeyer, Andrea L.
Sharma, Girdhar G.
Ching-Yu Huang
Helmink, Beth A.
Walker, Laura M.
Khor, Katrina C.
Nuskey, Beth
Sullivan, Kathleen E.
Pandita, Tej K.
Bassing, Craig H.
Sleckman, Barry P.
Source :
Nature; 7/27/2006, Vol. 442 Issue 7101, p466-470, 5p
Publication Year :
2006

Abstract

The ATM (ataxia-telangiectasia mutated) protein kinase mediates early cellular responses to DNA double-strand breaks (DSBs) generated during metabolic processes or by DNA-damaging agents. ATM deficiency leads to ataxia-telangiectasia, a disease marked by lymphopenia, genomic instability and an increased predisposition to lymphoid malignancies with chromosomal translocations involving lymphocyte antigen receptor loci. ATM activates cell-cycle checkpoints and can induce apoptosis in response to DNA DSBs. However, defects in these pathways of the DNA damage response cannot fully account for the phenotypes of ATM deficiency. Here, we show that ATM also functions directly in the repair of chromosomal DNA DSBs by maintaining DNA ends in repair complexes generated during lymphocyte antigen receptor gene assembly. When coupled with the cell-cycle checkpoint and pro-apoptotic activities of ATM, these findings provide a molecular explanation for the increase in lymphoid tumours with translocations involving antigen receptor loci associated with ataxia-telangiectasia. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
442
Issue :
7101
Database :
Complementary Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
21703240
Full Text :
https://doi.org/10.1038/nature04866