Back to Search Start Over

Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration.

Authors :
Yokota, Toshifumi
Qi-Long Lu
Morgan, Jennifer E.
Davies, Kay E.
Fisher, Rosie
Takeda, Shin'ichi
Partridge, Terence A.
Source :
Journal of Cell Science; 7/1/2006, Vol. 119 Issue 13, p4-4, 1p
Publication Year :
2006

Abstract

Duchenne muscular dystrophy and the mdx mouse myopathies reflect a lack of dystrophin in muscles. However, both contain sporadic clusters of revertant fibers (RFs) that express dystrophin. RF clusters expand in size with age in mdx mice. To test the hypothesis that the expansion of clusters is achieved through the process of muscle degeneration and regeneration, we analyzed muscles of mdx mice in which degeneration and regeneration were inhibited by the expression of micro-dystrophins or utrophin transgenes. Postnatal RF expansion was diminished in direct correlation to the protective effect of the transgene expression. Similarly, expansion of RFs was inhibited when muscle regeneration was blocked by irradiation. However, in irradiated muscles, irradiation-tolerant quiescent muscle precursor cells reactivated by notexin effectively restored RF expansion. Our observations demonstrate that revertant events occur initially within a subset of muscle precursor cells. The proliferation of these cells, as part of the regeneration process, leads to the expansion of RF clusters within degenerating muscles. This expansion of revertant clusters depicts the cumulative history of regeneration, thus providing a useful index for functional evaluation of therapies that counteract muscle degeneration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219533
Volume :
119
Issue :
13
Database :
Complementary Index
Journal :
Journal of Cell Science
Publication Type :
Academic Journal
Accession number :
21472769
Full Text :
https://doi.org/10.1242/jcs.03000