Back to Search Start Over

On matrix analogs of Fermat’s little theorem.

Authors :
Zarelua, A.
Source :
Mathematical Notes; May/Jun2006, Vol. 79 Issue 5/6, p783-796, 14p
Publication Year :
2006

Abstract

The theorem proved in this paper gives a congruence for the traces of powers of an algebraic integer for the case in which the exponent of the power is a prime power. The theorem implies a congruence in Gauss’ form for the traces of the sums of powers of algebraic integers, generalizing many familiar versions of Fermat’s little theorem. Applied to the traces of integer matrices, this gives a proof of Arnold’s conjecture about the congruence of the traces of powers of such matrices for the case in which the exponent of the power is a prime power. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00014346
Volume :
79
Issue :
5/6
Database :
Complementary Index
Journal :
Mathematical Notes
Publication Type :
Academic Journal
Accession number :
21154457
Full Text :
https://doi.org/10.1007/s11006-006-0090-y