Back to Search
Start Over
On matrix analogs of Fermat’s little theorem.
- Source :
- Mathematical Notes; May/Jun2006, Vol. 79 Issue 5/6, p783-796, 14p
- Publication Year :
- 2006
-
Abstract
- The theorem proved in this paper gives a congruence for the traces of powers of an algebraic integer for the case in which the exponent of the power is a prime power. The theorem implies a congruence in Gauss’ form for the traces of the sums of powers of algebraic integers, generalizing many familiar versions of Fermat’s little theorem. Applied to the traces of integer matrices, this gives a proof of Arnold’s conjecture about the congruence of the traces of powers of such matrices for the case in which the exponent of the power is a prime power. [ABSTRACT FROM AUTHOR]
- Subjects :
- MATRICES (Mathematics)
ALGEBRA
PROOF theory
SET theory
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 00014346
- Volume :
- 79
- Issue :
- 5/6
- Database :
- Complementary Index
- Journal :
- Mathematical Notes
- Publication Type :
- Academic Journal
- Accession number :
- 21154457
- Full Text :
- https://doi.org/10.1007/s11006-006-0090-y