Back to Search Start Over

Using DragPushing to Refine Centroid Text Classifiers.

Authors :
Songbo Tan
Xueqi Cheng
Bin Wang
Hongbo Xu
Ghanem, Moustafa M.
Yike Guo
Source :
SIGIR Forum; 2005 Proceedings, p653-654, 2p, 4 Charts
Publication Year :
2005

Abstract

We present a novel algorithm, DragPushing, for automatic text classification. Using a training data set, the algorithm first calculates the prototype vectors, of centroids, for each of the available document classes. Using misclassified examples, it then iteratively refines these centroids; by dragging the centroid of a correct class towards a misclassified example and in the same time pushing the centroid of an incorrect class away from the misclassified example. The algorithm is simple to implement and is computationally very efficient. Evaluation experiments conducted on two benchmark collections show that its classification accuracy is comparable to that of more complex methods, such as support vector machines (SVM). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01635840
Database :
Complementary Index
Journal :
SIGIR Forum
Publication Type :
Periodical
Accession number :
19054853