Back to Search Start Over

Millimeter-wave-detected, millimeter-wave optical polarization spectroscopy.

Authors :
Steeves, Adam H.
Bechtel, Hans A.
Coy, Stephen L.
Field, Robert W.
Source :
Journal of Chemical Physics; 10/8/2005, Vol. 123 Issue 14, p141102, 4p, 1 Diagram, 3 Graphs
Publication Year :
2005

Abstract

We report a new form of microwave optical double-resonance spectroscopy called millimeter-wave-detected, millimeter-wave optical polarization spectroscopy (mmOPS). In contrast to other forms of polarization spectroscopy, in which the polarization rotation of optical beams is detected, the mmOPS technique is based on the polarization rotation of millimeter waves induced by the anisotropy from optical pumping out of the lower or upper levels of the millimeter wave transition. By monitoring ground-state rotational transitions with the millimeter waves, the mmOPS technique is capable of identifying weak or otherwise difficult-to-observe optical transitions in complex chemical environments, where multiple molecular species or vibrational states can lead to spectral congestion. Once a transition is identified, mmOPS can then be used to record pure rotational transitions in vibrationally and electronically excited states, with the resolution limited only by the radiative decay rate. Here, the sensitivity of this nearly-background-free technique is demonstrated by optically pumping the weak, nominally spin-forbidden CS e <superscript>3</superscript>Σ<superscript>-</superscript>-X <superscript>1</superscript>Σ<superscript>+</superscript> (2-0) and d <superscript>3</superscript>Δ-X <superscript>1</superscript>Σ<superscript>+</superscript> (6-0) electronic transitions while probing the CS X <superscript>1</superscript>Σ<superscript>+</superscript> (v<superscript>″</superscript>=0,J<superscript>″</superscript>=2-1) rotational transition with millimeter waves. The J<superscript>′</superscript>=2,N<superscript>′</superscript>=2←J<superscript>′</superscript>=1,N<superscript>′</superscript>=1 pure rotational transition of the CS e <superscript>3</superscript>Σ<superscript>-</superscript> (v<superscript>′</superscript>=2) state is then recorded by optically preparing the J<superscript>′</superscript>=1,N<superscript>′</superscript>=1 level of the e <superscript>3</superscript>Σ<superscript>-</superscript> (v<superscript>′</superscript>=2) state via the J<superscript>′</superscript>=1,N<superscript>′</superscript>=1←J<superscript>″</superscript>=1 transition of the e <superscript>3</superscript>Σ<superscript>-</superscript>-X <superscript>1</superscript>Σ<superscript>+</superscript> (2-0) band. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
123
Issue :
14
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
18616916
Full Text :
https://doi.org/10.1063/1.2069865