Back to Search
Start Over
Overtone spectroscopy of C–H ethyl stretches of 1-butyne.
- Source :
- Journal of Chemical Physics; 8/22/2005, Vol. 123 Issue 8, p084316, 7p, 1 Chart, 5 Graphs
- Publication Year :
- 2005
-
Abstract
- Room-temperature photoacoustic (PA) spectra and jet-cooled action spectra of the first to third overtone regions of the ethyl C–H stretches in vapor phase 1-butyne, CH<subscript>3</subscript>CH<subscript>2</subscript>C=C–H, were measured. Both the PA and action spectra exhibit a complex multiple peak structure being better resolved and more pronounced in the latter, due to inhomogeneous structure reduction. The observed manifolds were analyzed in terms of a simplified joint local-/normal-mode (LM/NM) model accounting for two types of C–H stretches (methyl and methylene) and for Fermi resonances between stretches and deformations. The retrieved parameters, used for calculation of the eigenstates, come from the best-fit parameters based on the diagonalization of the vibrational Hamiltonian in the LM/NM basis. The parameters were obtained by comparing the eigenvalues and the sum of the squares of the expansion coefficients of the eigenvectors of the C–H stretches of methyl and methylene to the action spectra peak positions and intensities, respectively. This approximate model vibrational Hamiltonian is proposed to explain most observed spectral features, corresponding to C–H stretch bands and to combinations of C–H stretches and deformations, indicating the importance of the Fermi resonance. The model was also applied to calculate the dynamics of the C–H stretching modes resulting from coupling with the deformations, implying rapid initial state decay on subpicosecond time scale. Decays of several picoseconds were found for complete transfer of probability from the initially prepared state of methylene and methyl to the counterpart LM states. [ABSTRACT FROM AUTHOR]
- Subjects :
- SPECTRUM analysis
RESONANCE
EIGENVALUES
VECTOR spaces
ETHYL chloride
FLUID dynamics
Subjects
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 123
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 18429403
- Full Text :
- https://doi.org/10.1063/1.2011397