Back to Search
Start Over
Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal–Organic Frameworks.
- Source :
- Nano-Micro Letters; 1/27/2025, Vol. 17 Issue 1, p1-56, 56p
- Publication Year :
- 2025
-
Abstract
- Highlights: The progress of metal–organic frameworks (MOFs) in capturing and separating F-gases is highlighted. The molecular mechanisms of adsorption and separation are classified and analyzed. Toolboxes of MOFs structural design for fluorinated gases separation are provided. Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal–organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23116706
- Volume :
- 17
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nano-Micro Letters
- Publication Type :
- Academic Journal
- Accession number :
- 182843979
- Full Text :
- https://doi.org/10.1007/s40820-024-01584-1