Back to Search
Start Over
A biallelically active embryonic enhancer dictates GNAS imprinting through allele-specific conformations.
- Source :
- Nature Communications; 2/5/2025, Vol. 16 Issue 1, p1-13, 13p
- Publication Year :
- 2025
-
Abstract
- Genomic imprinting controls parental allele-specific gene expression via epigenetic mechanisms. Abnormal imprinting at the GNAS gene causes multiple phenotypes, including pseudohypoparathyroidism type-1B (PHP1B), a disorder of multihormone resistance. Microdeletions affecting the neighboring STX16 gene ablate an imprinting control region (STX16-ICR) of GNAS and lead to PHP1B upon maternal but not paternal inheritance. Mechanisms behind this imprinted inheritance mode remain unknown. Here, we show that the STX16-ICR forms different chromatin conformations with each GNAS parental allele and enhances two GNAS promoters in human embryonic stem cells. When these cells differentiate toward proximal renal tubule cells, STX16-ICR loses its effect, accompanied by a transition to a somatic cell-specific GNAS imprinting status. The activity of STX16-ICR depends on an OCT4 motif, whose disruption impacts transcript levels differentially on each allele. Therefore, a biallelically active embryonic enhancer dictates GNAS imprinting via different chromatin conformations, underlying the allele-specific pathogenicity of STX16-ICR microdeletions. STX16 microdeletions cause pseudohypoparathyroidism type-1B only on the maternal allele. Here, the authors show that the allele-specific pathogenicity reflects differential conformations of a biallelically active enhancer dictating GNAS imprinting. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 16
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 182798933
- Full Text :
- https://doi.org/10.1038/s41467-025-56608-0